A Fresh Look at Obesity and the Role of Bariatric Surgery

Enhancing Your Benefit Design Approach

National Alliance of Healthcare Purchaser Coalitions Educational Webinar, May 2, 2019

TODAY'S SPEAKERS

Scott Kahan, MD, MPH Director National Center for Weight and Wellness

Elliot Fegelman, MD Therapeutic Area, Lead Metabolics Johnson & Johnson

Neil Goldfarb President and CEO Greater Philadelphia Business Coalition on Health

Today's presentation is being supported through an educational sponsorship provided by

Outline for Today's Presentation

1. Obesity is a disease: prevalence, health impact, and economic impact, and overall approaches to treatment

2. Bariatric surgery: how does it work and what do we know about effectiveness and safety?

3. Employer considerations in designing and monitoring the bariatric surgery benefit

4. Questions and answers/discussion

A Brief Overview of Obesity Treatments

Scott Kahan, MD, MPH, FTOS

Director, National Center for Weight and Wellness

Department of Health Policy & Management

Johns Hopkins School of Public Health

kahan@nationalweight.org

Disclosures

- Consulting: Novo Nordisk, Novartis, Amgen, Orexigen, Bausch, Vivus, Google, Optum, Anthem, Express Scripts, Health Monitor, Medscape, WebMD, Phenomix, Flo, Biologix, KVK Tech, McKinsey, Johns Hopkins Healthcare
- Board of Directors/Advisors: American Board of Obesity Medicine, The Obesity Society, Obesity Action Coalition, Obesity Treatment Foundation, True Health Initiative, Playworks DC, Global Liver Institute, NASH Council
- Textbook royalties: Johns Hopkins University Press, Wolters-Kluwer, Lippincott Williams & Wilkins

Obesity Prevalence in US Adults

Fryar CD et al. NCHS Health E-stat. September 2014. CDC/NCHS, NHANES 2007-2010.

Obesity-Related Conditions

Why Is It So Hard to Lose Weight and Keep It Off?!

Modest Weight Loss Improves Health and Risks

Modest Weight Loss Improves Health and Risks

Weight-related Condition	% Weight Loss for Therapeutic Benefit	References
Diabetes Prevention	3% to 10%	DPP (Lancet, 2009) SEQUEL (Garvey et al, 2013)
Hypertension	5% to >15%	Look AHEAD (Wing, 2011)
Dyslipidemia	3% to >15%	Look AHEAD (Wing, 2011)
HbA1c	3% to >15%	Look AHEAD (Wing, 2011)
NAFLD	10%	Assy et al, 2007; Dixon et at, 2004; Anish et al, 2009
Sleep Apnea	10%	Sleep AHEAD (Foster, 2009) Winslow et al, 2012
Osteoarthritis	5-10%	Christensen et al, 2007; Felson et al, 1992; Aaboe et al, 2011
Stress Incontinence	5-10%	Burgio et al, 2007 Leslee et al, 2009
GERD	5-10% (women) 10% (men)	Singh et al, 2013 Tutujian R, 2011
PCOS	5-15% (>10% optimal)	Panidis D et al, 2008; Norman et al, 2002; Moran et al, 2013

Obesity Treatment Options

- Behavioral treatment
- Structured diets
- Pharmacotherapy
- Medical devices/procedures
- Bariatric surgery

Behavioral Therapy in Obesity/Diabetes

Behavioral Therapy in Obesity/Diabetes

Very Low Calorie Structured Diets

Very Low Calorie Structured Diets in T2DM

Obesity Pharmacotherapy

- 5 FDA-approved short-term medications
 - Phentermine and noradrenergics
- 5 FDA-approved long-term medications
 - Orlistat
 - Phentermine/topiramate ER
 - Lorcaserin
 - Naltrexone/Bupropion SR
 - Liraglutide 3.0 mg

Obesity Pharmacotherapy

Garvey WT, et al. Am J Clin Nutr. 2012;95:297-308

Obesity Pharmacotherapy

Patients with Extreme Obesity (BMI >45)

Long-Term Benefits (Generally) Require Continued Management

Outcomes By Responder Status

Pharmacotherapy Improves RFs and Prevents Comorbid Conditions

	Orlistat	Lorcaserin	Phentermine/ topiramate ER	Naltrexone/ bupropion SR	Liraglutide 3.0 mg
WC	¥	¥	¥	$\mathbf{\Psi}$	¥
BP	$\mathbf{\Psi}$	\checkmark	Ψ	^	\checkmark
LDL	$\mathbf{v}\mathbf{v}$	¥	¥	$\mathbf{\Psi}$	¥
HDL	1	1	^	^	1
TG	$\mathbf{v}\mathbf{v}$	$\mathbf{v}\mathbf{v}$	$\mathbf{v}\mathbf{v}$	44	$\mathbf{\Psi}\mathbf{\Phi}$
HR	$\mathbf{\Psi}$	\checkmark	-	^	1
A1C	$\mathbf{\Psi}$	$\mathbf{v}\mathbf{v}$	$\mathbf{\Psi}$	$\mathbf{\Psi}$	$\psi\psi\psi$
Diabetes	$\mathbf{A}\mathbf{A}$	$\mathbf{A}\mathbf{A}$	44	\checkmark	1

Medical Devices for Obesity Treatment

Asterior Vagas Nerre Track with Electrode

Bariatric Surgery

Roux-en-Y Gastric Bypass

Sleeve Gastrectomy

Treatment Works...Only If Used

A Brief Overview of Obesity Treatments

Scott Kahan, MD, MPH, FTOS

Director, National Center for Weight and Wellness

Department of Health Policy & Management

Johns Hopkins School of Public Health

kahan@nationalweight.org

Weight Loss Surgery

ETHICON PART OF THE JOHMON JOHMON FAMILY OF COMPANIES

Mechanisms of Bariatric Surgery

Classical modelCMechanicalFRestricted food intakeAlteredMalabsorption• E• NAltered• NAltered• NAltered• NAltered

Current model Physiological

Altered GI signals to brain

- Endocrine
- Neuronal

Altered GI signals to other tissues (pancreas, liver)

Hormone Changes after Surgery

Changes in BMI

35

•Weight loss is not the only potential benefit...

•Long-term mortality reduction by comorbid disease type

Patients followed up on average for 7.1 years. Note: in the Adams, et al. study, the rates of death not caused by disease, such as accidents and suicide, were 58% higher in the surgery group (P=0.004, 63 versus 36 deaths for 15,850 matched patients in the study).

Adams TD, Gress RE, Smith SC et al. Long-term mortality after gastric bypass surgery. N Engl J Med 2007; 357(8):753-61.

Complications

Table 2—Complications of metabolic surgery	
Complications	Frequency (%)
Sepsis from anastomotic leak	0.1-5.6
Hemorrhage	1–4
Cardiopulmonary events	<1
Thromboembolic disease	0.34
Death	0.1-0.3
Late complications for LAGB Band slippage Leakage Erosion	15 2–5 1–2
Late complications of bypass procedures Anastomotic strictures Marginal ulcers Bowel obstructions Kidney stones Metabolic bone disease Alcohol use disorder	1–5 1–5 0.5–2 NK NK NK
Micronutrient and macronutrient deficiencies from RYGB 2–3 years postoperative Iron deficiency Vitamin B ₁₂ deficiency Calcium deficiency Vitamin D deficiency	45–52 8–37 10 51
Fat-soluble vitamin deficiencies (A, D, E, and K) and protein calorie malnutrition from BPD+DS procedures	1–5

Schauer, P, Diabetes Care, 2016

Johnson-Johnson innovation

What *is* Metabolics after all?

- The idea that biologic changes occur through distant signals that are released following traditional weight-loss surgery
- These distant signals turn on, and off, complex cell-to-cell and intracellular events that change the cells' behavior
- These cellular changes influence the organs they make up to behave differently, and alter organ-to-organ communications
- *In toto*, these changes result in health improvements that proceed, and are unrelated to, the weight loss ultimately experienced by the patient.

Type II Diabetes Mellitus

Johnson-Johnson innovation

The *complete* list of Randomized & Controlled trials for impact on Diabetes

Table 1—Metabolic surgery RCTs for T2D (n = 794)							
	BMI (kg/m ²),		No. of patients	Follow-up		Outcome (remission or	
Study	% of patients	Design	randomized	(months)	Remission criteria*	change in HbA _{1c})	
Dixon (8)	<35, 22%	LAGB vs. control	60	24	HbA _{1c} <6.2%	73% vs. 13%, P < 0.001	
Schauer (30,31)	<35, 36%	RYGB vs. SG vs. control	150	36	HbA _{1c} ≤6.0%	35% vs. 20% vs. 0, P = 0.002	
Mingrone (32,33)	>35, 100%	RYGB vs. BPD vs. control	60	60	HbA _{1c} ≤6.5%	42% vs. 68% vs. 0, P = 0.003	
Ikramuddin (34,35)	<35, 59%	RYGB vs. control	120	24	HbA _{1c} <6%	44% vs. 9%, P < 0.001	
Liang (36)	<35, 100%	RYGB vs. control	101	12	HbA _{1c} <6.5%**	90% vs. 0 vs. 0, P < 0.0001	
Halperin (37)	<35, 34%	RYGB vs. control	38	12	HbA _{1c} <6.5%	58% vs. 16%, P = 0.03	
Courcoulas (38,39)	<35, 43%	RYGB vs. LAGB vs. control	69	36	HbA _{1c} <6.5%	40% vs. 29% vs. 0, P = 0.004	
Wentworth (40)	≤30, 100%	LAGB vs. control	51	24	Fasting blood glucose $<$ 7.0 mmol/L	52% vs. 8%, P = 0.001	
Parikh (41)	<35, 100%	Bariatric surgery (RYGB, LAGB, SG) vs. control	57	6	HbA1c <6.5%	65% vs. 0, P = 0.0001	
Ding (42)	<35, 34%	LAGB vs. control	45	12	HbA1c <6.5%***	33% vs. 23%, P = 0.46	
Cummings (43)	<35, 25%	RYGB vs. control	43	12	HbA _{1c} <6.0%	60% vs. 5.9%, P = 0.002	

*Remission was a primary or secondary end point. Reaching HbA_{1c} value without diabetes medication, unless otherwise specified. **Remission not precisely defined, HbA_{1c} <6.5% by extrapolation. ***On or off diabetes medications.

Schauer, P, Diabetes Care, 2016

Durability of Affect on Diabetes

	Surger	у		Medic Lifest	al/ yle						
Study (Operation) [Follow-up; HbA _{1c} end point]	in SD	N	Mean	SD	N	Weight	IV, Random, 95% CI		Mean Diffe	erences in HbA _{te}	
Parikh 2014 (RYGB/LAGB/SG) [6 mo; ≤6.5% off meds] (41) 6.	2 0.9	20	7.8	1.7	24	6.1%	-1.60 [-2.39, -0.81]			Ĭ	
Courcoulas 2014 (RYGB/LAGB) [12 mo; ≤6.5% off meds](38) 6.	6 0.8	41	7	0.9	17	6.9%	-0.40 [-0.89, 0.09]				
Ding 2015 (LAGB) [12 mo; ≤6.5%] (42) 7.1	7 0.3	18	7.15	0.28	22	7.5%	0.02 [-0.16, 0.20]			+ 5	f -
Halperin 2014 (RYGB) [12 mo: ≤6.5% off meds] (37) 6.	2 1.4	19	8.8	1	19	6.1%	-2.60 [-3.37, -1.83]	_		are are	
Ikramuddin 2013 (RYGB) [12 mo; ≤7.0%] (34) 6.	3 0.9	57	7.8	1.5	57	7.0%	-1.50 [-1.95, -1.05]				
Liang 2013 (RYGB) [12 mo; ≤7.0% off meds] (36)	6 0.3	31	7.6	1.4	70	7.3%	-1.60 [-1.94, -1.26]			- 7 9	1
Schauer 2012 (RYGB/SG) [12 mo; ≤6.0%] (30) 6.	5 0.95	99	7.5	1.8	41	6.7%	-1.00 [-1.58, -0.42]			l l	
Cummings 2016 (RYGB) [12 mo; ≤6.5% off meds] (43) 6.	4 1.6	15	6.9	1.3	17	5.3%	-0.50 [-1.52, 0.52]			<u>– na</u>	1
Dixon 2008 (LAGB) [24 mo; ≤6.2% off meds] (8)	6 0.8	30	7.2	1.4	30	6.7%	-1.20 [-1.78, -0.62]				
Ikramuddin 2015 (RYGB) [24 mo; ≤7.0%] (35) 6.	5 1.6	56	8.4	2.9	54	5.8%	-1.90 [-2.78, -1.02]			3	ġ.
Mingrone 2012 (RYGB/BPD) [24 mo: ≤6.5% off meds] (32) 5.6	5 0.95	20	7.69	0.57	20	7.0%	-2.04 [-2.53, -1.55]			5	F)
Wentworth 2014 (LAGB) [24 mo; ≤7.0%] (40) 6.	1 0.8	23	7.3	1.4	25	6.5%	-1.20 [-1.84, -0.56]				
Courcoulas 2015 (RYGB/LAGB) [36 mo: ≤6.5% off meds] (39) 7.	1 0.4	38	7.2	0.4	14	7.5%	-0.10 [-0.35, 0.15]		24	-+ l	£.
Schauer 2014 (RYGB/SG) [36 mo; ≤6.0%] (31) 6.8	5 1.3	97	8.4	2.2	40	6.3%	-1.55 [-2.28, -0.82]				
Mingrone 2015 (RYGB/BPD) [60 mo; ≤6.5% off meds] (33) 6.5	5 0.5	38	6.9	0.6	15	7.3%	-0.35 [-0.69, -0.01]		-	- ▼	
Random-Effect Model		602			465	100.0%	-1.14 [-1.57, -0.71]		•		
Heterogeneity: $Tau^2 = 0.63$; $Chi^2 = 200.88$, $df = 14$ (P < 0.00)	001); l ² =	= 93%						<u> </u>	-L	1 1	-
Test for overall effect: $Z = 5.20 (P < 0.00001)$								-4	-2	0 2	4
									Surgery	Medical/Lifestyle	
							Schauer	. P. <i>Dia</i>	betes Care	e. 2016	

Bone and Joint Disease

Johnson&Johnson Innovation

Obesity and Joint Replacement

- OA responsible for 91% of Hips (THA) and 98% of Knee (TKA)
- 90% of patients undergoing TKA are overweight or obese
- A rise of 5 BMI results in the doubling of risk for TKA
- OA develops as cartilage breaks down faster than replaced
 - Mechanical
 - Humeral
 - Metabolic
 - Genetic

Kulkarni, K, M, Maturitas, 2016

Emerging Evidence Suggests Metabolic Role

- Non-Alcoholic Steato-hepatitis (NASH)
- Female Cancers
- Sleep Apnea
- Inflammatory Diseases

BENEFIT DESIGN CONSIDERATIONS

- Know Your Data
- Review Your Benefits
- Review Your Provider Network and Payment Mechanisms

Content is based on a panel discussion at the National Alliance's November 2018 Fall Forum. Participants included: Dr. Janine Kyrillos, director of the Comprehensive Weight Management Program at Thomas Jefferson University; Dr. Samuel Wasser, bariatric surgeon at Virtua; and, John Dawson, Chief Actuary at Healthstat.

Data

- Obesity rates: overall, demographic subgroups, geographic location
- Bariatric surgery rates (if benefit already offered)
 - Overall and by procedure type
 - By provider
 - As proportion of candidate population
 - Waiting times from referral to surgery
- Surgical outcomes
 - Short term
 - Longer term

Benefits

- Implement a bariatric surgery benefit (if not already available)
- Review current benefit:
 - Eligibility criteria
 - Waiting periods
 - Prior authorization procedures
 - Procedures covered and clinical guidelines
 - Pre- and post-surgical lifestyle modification and support
 - Out-of-pocket payments and financial barriers
- Ensure appropriate placement of bariatric surgery in the overall obesity strategy

Provider Network Considerations

- Review the current network. Consider narrowing the network.
 - Accreditation by the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP)
 - Health plan criteria for selecting and monitoring centers of excellence
 - Volume
 - Quality metrics including infection and other complication rates, repeat surgery rates, short and long-term outcomes
- Review payment mechanisms with health plans